Introduction to Data Mining

Introduction Outline

Goal: Provide an overview of data mining.

- Define data mining
- Data mining vs. databases
- Basic data mining tasks
- Data mining development
- Data mining issues

Introduction

- Data is produced at a phenomenal rate
- Our ability to store has grown
- Users expect more sophisticated information
- How? UNCOVER HIDDEN INFORMATION DATA MINING

Data Mining

- Objective: Fit data to a model
- Potential Result: Higher-level meta information that may not be obvious when looking at raw data
- Similar terms
 - Exploratory data analysis
 - Data driven discovery
 - Deductive learning

Data Mining Algorithm

- Objective: Fit Data to a Model
 - Descriptive
 - Predictive
- Preferential Questions
 - Which technique to choose?
 - ARM/Classification/Clustering
 - Answer: Depends on what you want to do with data?
 - Search Strategy Technique to search the data
 - Interface? Query Language?
 - Efficiency

Database Processing vs. Data Mining Processing

- Query
 - Well defined
 - SQL

- Query
 - Poorly defined
 - No precise query language

- Output
 - Precise
 - Subset of database

Output

- Fuzzy
- Not a subset of database

Query Examples

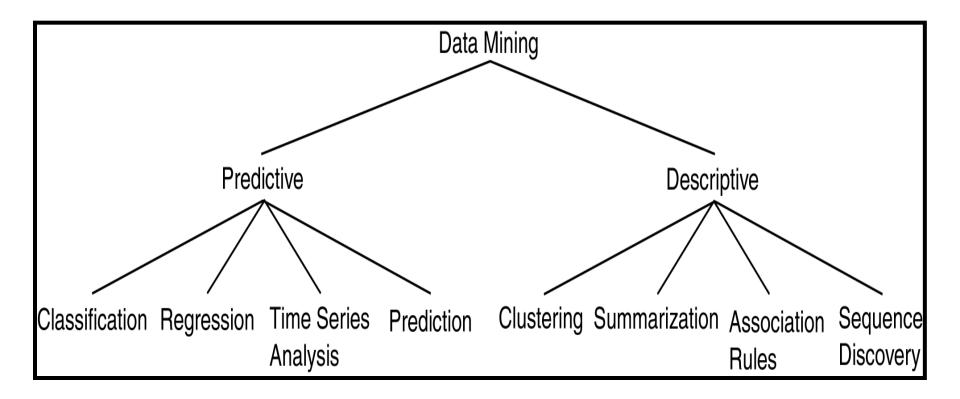
- Database
 - Find all credit applicants with last name of Smith.
 - Identify customers who have purchased more than \$10,000 in the last month.
 - Find all customers who have purchased milk
- Data Mining

- Find all credit applicants who are poor credit risks. (classification)

Identify customers with similar buying habits.
 (Clustering)

Find all items which are frequently purchased with milk. (association rules)

Data Mining Models and Tasks



Basic Data Mining Tasks

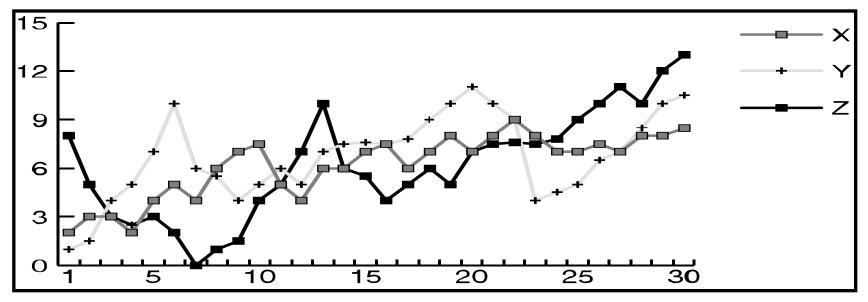
- Classification maps data into predefined groups or classes
 - Supervised learning
 - Pattern recognition
 - Prediction
- **Regression** is used to map a data item to a real valued prediction variable.
- *Clustering* groups similar data together into clusters.
 - Unsupervised learning
 - Segmentation
 - Partitioning

Basic Data Mining Tasks (cont'd)

- *Summarization* maps data into subsets with associated simple descriptions.
 - Characterization
 - Generalization
- Link Analysis uncovers relationships among data.
 - Affinity Analysis
 - Association Rules
 - Sequential Analysis determines sequential patterns.

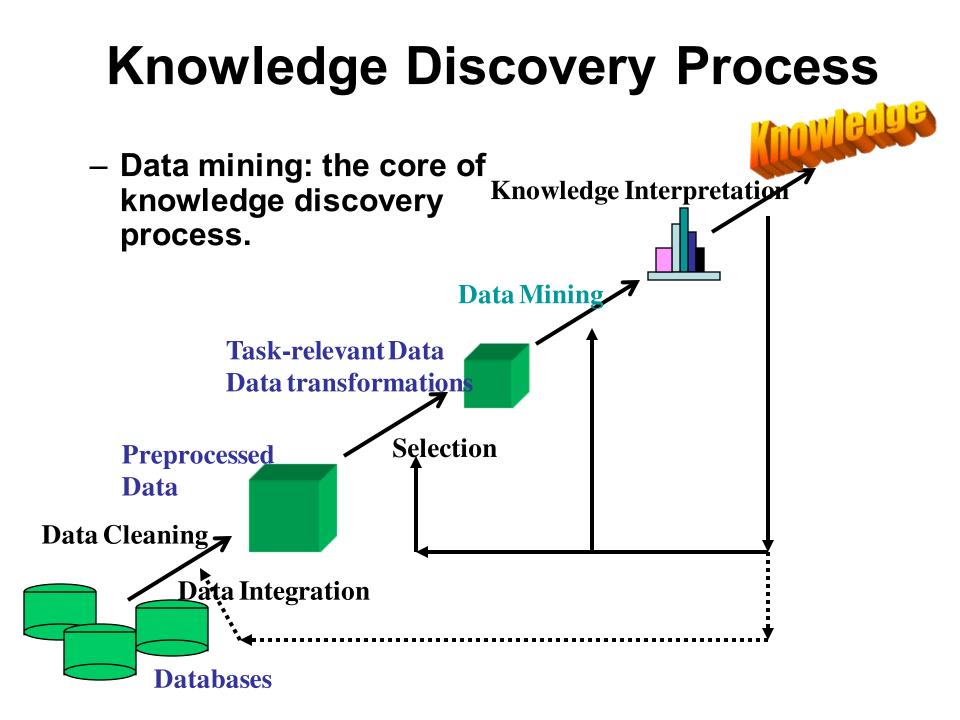
Ex: Time Series Analysis

- Example: Stock Market
- Predict future values
- Determine similar patterns over time
- Classify behavior



Data Mining vs. KDD

- Knowledge Discovery in Databases (KDD): process of finding useful information and patterns in data.
- **Data Mining:** Use of algorithms to extract the information and patterns derived by the KDD process.



KDD Process Ex: Web Log

• Selection:

- Select log data (dates and locations) to use

• Preprocessing:

- Remove identifying URLs
- Remove error logs
- Transformation:
 - Sessionize (sort and group)

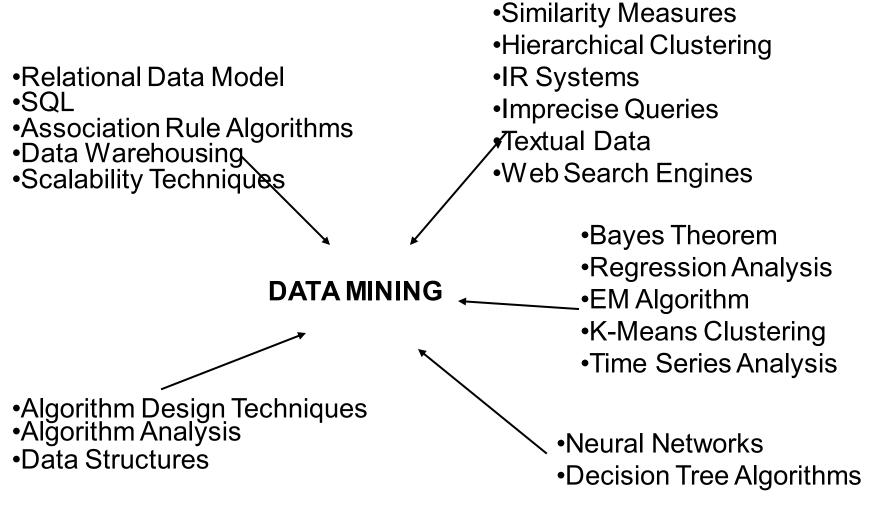
• Data Mining:

- Identify and count patterns
- Construct data structure
- Interpretation/Evaluation:
 - Identify and display frequently accessed sequences.

Potential User Applications:

- Cache prediction
- Personalization

Data Mining Development



KDD Issues

- Human Interaction
- Overfitting
- Outliers
- Interpretation
- Visualization
- Large Datasets
- High Dimensionality

KDD Issues (cont'd)

- Multimedia Data
- Missing Data
- Irrelevant Data
- Noisy Data
- Changing Data
- Integration
- Application

Social Implications of DM

- Privacy
- Profiling
- Unauthorized use

Data Mining Metrics

- Usefulness
- Return on Investment (ROI)
- Accuracy
- Space/Time

Database Perspective on Data Mining

- Scalability
- Real World Data
- Updates
- Ease of Use

Outline of Today's Class

- Statistical Basics
 - Point Estimation
 - Models Based on Summarization
 - Bayes Theorem
 - Hypothesis Testing
 - Regression and Correlation
- Similarity Measures

Point Estimation

- *Point Estimate:* estimate a population parameter.
- May be made by calculating the parameter for a sample.
- May be used to predict value for missing data.
- Ex:
 - R contains 100 employees
 - 99 have salary information
 - Mean salary of these is \$50,000
 - Use \$50,000 as value of remaining employee's salary.

Is this a good idea?

Estimation Error

• **Bias:** Difference between expected value and actual value.

$$Bias = E(\hat{\Theta}) - \Theta$$

 Mean Squared Error (MSE): expected value of the squared difference between the estimate and the actual value:

$$MSE(\hat{\Theta}) = E(\hat{\Theta} - \Theta)^2$$

- Why square?
- Root Mean Square Error (RMSE)

Jackknife Estimate

- Jackknife Estimate: estimate of parameter is obtained by omitting one value from the set of observed values.
 - Treat the data like a population
 - Take samples from this population
 - Use these samples to estimate the parameter
- Let $\theta(hat)$ be an estimate on the entire pop.
- Let $\theta_{(j)}$ (hat) be an estimator of the same form with observation j deleted
- Allows you to examine the impact of outliers!

Maximum Likelihood Estimate (MLE)

- Obtain parameter estimates that maximize the probability that the sample data occurs for the specific model.
- Joint probability for observing the sample data by multiplying the individual probabilities. Likelihood function:

$$L(\Theta \mid x_1, ..., x_n) = \prod_{i=1}^n f(x_i \mid \Theta)$$

• Maximize L.

MLE Example

- Coin toss five times: {H,H,H,H,T}
- Assuming a perfect coin with H and T equally likely, the likelihood of this sequence is:

$$L(p \mid 1, 1, 1, 1, 0) = \prod_{i=1}^{5} 0.5 = 0.03.$$

• However if the probability of a H is 0.8 then:

 $L(p \mid 1, 1, 1, 1, 0) = 0.8 \times 0.8 \times 0.8 \times 0.8 \times 0.2 = 0.08.$

MLE Example (cont'd)

• General likelihood formula:

$$L(p \mid x_1, ..., x_5) = \prod_{i=1}^5 p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^5 x_i} (1-p)^{5-\sum_{i=1}^5 x_i}.$$
$$l(p) = \log L(p) = \sum_{i=1}^5 x_i \log(p) + (5-\sum_{i=1}^5 x_i) \log(1-p)$$
$$\frac{\partial l(p)}{\partial p} = \sum_{i=1}^5 \frac{x_i}{p} - \frac{5-\sum_{i=1}^5 x_i}{1-p}.$$
$$p = \frac{\sum_{i=1}^5 x_i}{5}$$

• Estimate for p is then 4/5 = 0.8

Expectation-Maximization (EM)

- Solves estimation with incomplete data.
- Obtain initial estimates for parameters.
- Iteratively use estimates for missing data and continue until convergence.

EM Example

$$\{1, 5, 10, 4\}; n = 6 \ k = 4; \text{ Guess } \hat{\mu}^0 = 3.$$
$$\hat{\mu}^1 = \frac{\sum_{i=1}^k x_i}{n} + \frac{\sum_{i=k+1}^n x_i}{n} = 3.33 + \frac{3+3}{6} = 4.33$$
$$\hat{\mu}^2 = \frac{\sum_{i=1}^k x_i}{n} + \frac{\sum_{i=k+1}^n x_i}{n} = 3.33 + \frac{4.33+4.33}{6} = 4.77$$
$$\hat{\mu}^3 = \frac{\sum_{i=1}^k x_i}{n} + \frac{\sum_{i=k+1}^n x_i}{n} = 3.33 + \frac{4.77+4.77}{6} = 4.92$$
$$\hat{\mu}^4 = \frac{\sum_{i=1}^k x_i}{n} + \frac{\sum_{i=k+1}^n x_i}{n} = 3.33 + \frac{4.92+4.92}{6} = 4.97$$

EM Algorithm

```
Input:
   \Theta = \{\theta_1, ..., \theta_p\}
                                            //Parameters to be Estimated
   X_{obs} = \{x_1, ..., x_k\}
                                            //Input Database Values Observed
   X_{miss} = \{x_{k+1}, ..., x_n\}
                                            //Input Database Values Missing
Output:
                                            //Estimates for \Theta
    Θ
EM Algorithm:
   i := 0;
    Obtain initial parameter MLE estimate, \hat{\Theta}^{i};
    repeat
        Estimate missing data, \hat{X}^i_{miss};
       i++;
        Obtain next parameter estimate, \hat{\theta}^i to maximize data;
    until estimate converges;
```

Bayes Theorem Example

- Credit authorizations (hypotheses):
 h₁=authorize purchase, h₂ = authorize after further identification, h₃=do not authorize,
 h₄= do not authorize but contact police
- Assign twelve data values for all combinations of credit and income:

	1	2	3	4
Excellent	x ₁	X2	X3	X ₄
Good	X ₅	X6	X7	X ₈
Bad	X ₉	x ₁₀	X ₁₁	x ₁₂

 From training data: P(h₁) = 60%; P(h₂)=20%; P(h₃)=10%; P(h₄)=10%.

Bayes Example(cont'd)

• Training Data:

ID	Income	Credit	Class	Xi
1	4	Excellent	h ₁	X 4
2	3	Good	h ₁	X ₇
3	2	Excellent	h ₁	X ₂
4	3	Good	h ₁	X ₇
5	4	Good	h ₁	X 8
6	2	Excellent	h_1	X ₂
7	3	Bad	h_2	X ₁₁
8	2	Bad	h_2	X ₁₀
9	3	Bad	h ₃	X ₁₁
10	1	Bad	h ₄	X 9

Bayes Example(cont'd)

- Calculate $P(x_i|h_j)$ and $P(x_i)$
- Ex: $P(x_7|h_1)=2/6$; $P(x_4|h_1)=1/6$; $P(x_2|h_1)=2/6$; $P(x_8|h_1)=1/6$; $P(x_i|h_1)=0$ for all other x_i .
- Predict the class for x₄:
 - Calculate $P(h_j|x_4)$ for all h_j .
 - Place x_4 in class with largest value.
 - Ex:
 - $P(h_1|x_4) = (P(x_4|h_1)(P(h_1))/P(x_4))$ =(1/6)(0.6)/0.1=1.
 - x_4 in class h_1 .

Other Statistical Measures

• Chi-Squared

$$\chi^2 = \sum \frac{(O-E)^2}{E}.$$

- O observed value
 E Expected value based on hypothesis.
- Jackknife Estimate
 - estimate of parameter is obtained by omitting one value from the set of observed values.
- Regression
 - Predict future values based on past values
 - Linear Regression assumes linear relationship exists.

$$y = c_0 + c_1 x_1 + \dots + c_n x_n$$

- Find values to best fit the data
- Correlation

Similarity Measures

- Determine similarity between two objects.
- Similarity characteristics:
- $\forall t_i \in D, sim(t_i, t_i) = 1$
- $\forall t_i, t_j \in D, sim(t_i, t_j) = 0$ if t_i and t_j are not alike at all.
- $\forall t_i, t_j, t_k \in D, sim(t_i, t_j) < sim(t_i, t_k)$ if t_i is more like t_k than it is like t_j
- Alternatively, distance measure measure how unlike or dissimilar objects are.

Similarity Measures

Dice:
$$sim(t_i, t_j) = \frac{2\sum_{h=1}^{k} t_{ih} t_{jh}}{\sum_{h=1}^{k} t_{ih}^2 + \sum_{h=1}^{k} t_{jh}^2}$$

Jaccard: $sim(t_i, t_j) = \frac{\sum_{h=1}^{k} t_{ih} t_{jh}}{\sum_{h=1}^{k} t_{ih}^2 + \sum_{h=1}^{k} t_{jh}^2 - \sum_{h=1}^{k} t_{ih} t_{jh}}$
Cosine: $sim(t_i, t_j) = \frac{\sum_{h=1}^{k} t_{ih} t_{jh}}{\sqrt{\sum_{h=1}^{k} t_{ih}^2 \sum_{h=1}^{k} t_{jh}^2}}$
Overlap: $sim(t_i, t_j) = \frac{\sum_{h=1}^{k} t_{ih} t_{jh}}{min(\sum_{h=1}^{k} t_{ih}^2, \sum_{h=1}^{k} t_{jh}^2)}$

Distance Measures

• Measure dissimilarity between objects

Euclidean:
$$dis(t_i, t_j) = \sqrt{\sum_{h=1}^k (t_{ih} - t_{jh})^2}$$

Manhattan: $dis(t_i, t_j) = \sum_{h=1}^k |(t_{ih} - t_{jh})|$

Information Retrieval

- Information Retrieval (IR): retrieving desired information from textual data.
- Library Science
- Digital Libraries
- Web Search Engines
- Traditionally keyword based
- Sample query: Find all documents about "data mining".

DM: Similarity measures; Mine text/Web data.

Information Retrieval (cont'd)

- *Similarity:* measure of how close a query is to a document.
- Documents which are "close enough" are retrieved.
- Metrics:

– Precision = [Relevant and Retrieved]
[Retrieved]

-*Recall* = <u>|Relevant and Retrieved|</u> |Relevant|

IR Query Result Measures and Classification

